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We review the definition of the canonical coherent state, as proposed by Roy
Glauber in 1963, and prove the equivalence between its notable properties.
We then generalise the notion of quantum coherence, by first defining the
set of incoherent states. Throughout this manuscript, we consider meth-
ods of quantifying the coherence of a given quantum state. Upon defining
linear functionals and matrix norms, we establish the tools required to con-
struct coherence measures. This leads to the review of the conditions that
functionals must satisfy in order to be considered appropriate quantifiers of
coherence. By studying three examples and three counter-examples of co-
herence measures, we analyse the difficulty of constructing such functionals.
We then expand the idea of quantifying coherence into infinite-dimensional
Hilbert spaces, providing an extra property that finite-dimensional coher-
ence measures must satisfy in order to be suitable quantifiers of coherence
in infinite-dimensional systems. We conclude by quantifying the coherence
of the canonical coherent state, using the relative entropy of coherence.

1. Introduction

In quantum mechanics, we illustrate the behaviour of particles, such as elec-
trons, using wavefunctions [1]. These wavefunctions mathematically describe
the quantum state in which the particle resides. We can describe a system
of multiple waves in quantum mechanics as a linear combination of states.
For instance, a system of n waves - individually described by a state |ϕi〉
for each i = 1, . . . , n - is itself a quantum state and can be written as
|ϕsys.〉 = c1|ϕ1〉 + c2|ϕ2〉 + . . . + cn|ϕn〉 where c1, c2, . . . cn ∈ C. If we cal-
culate the expectation of an operator Â in a linear combination of states
|ϕsys.〉 = c1|ϕ1〉 + c2|ϕ2〉, we can then comment on the coherence of the
system.

Âϕ = 〈ϕsys.|Â|ϕsys.〉 = |c1|2 〈ϕ1|Â|ϕ1〉+ |c2|2 〈ϕ2|Â|ϕ2〉

+ 2Re(c̄1c2) 〈ϕ1|Â|ϕ2〉

If c1, c2 ∈ C, we may write them as c1 = r1e
iθ1 and c2 = r1e

iθ2 . Thus,
c̄1c2 = r1r2e

i(θ2−θ1). For this system of two waves to be perfectly coherent,
we require the phase difference, (θ2 − θ1), to be constant. This is intuitive
from the classical definition of coherence [2]: multiple waves are known to
be perfectly coherent if they have a constant phase difference and equal fre-
quency.

It was only up until very recently that mathematicians and physicists con-
sidered quantifying the coherence of a quantum state [3], with 2014 marking
the startline for the race to find as many methods of quantification as pos-
sible. There are two well-documented functionals satisfying the conditions
that have to be met in order to be called coherence measures [4]. We shall
discuss these functionals, and their properties, later.

Coherence is a basis-dependent concept. Throughout this paper, we shall
be working in the number basis {|n〉 | n ∈ N

⋃
{0}}, first defined by Fock

in 1932 [5]. This is an orthonormal basis that spans an infinite-dimensional
inner product space, known as a Hilbert space [6]. That is to say for any
n,m ∈ N

⋃
{0}, we have that 〈n|m〉 = δm,n. From the fact that the num-

ber basis spans an infinite-dimensional Hilbert space, any state |ϕ〉 can be
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written as |ϕ〉 =
∑∞
n=0 cn|n〉 for all n ∈ N

⋃
{0}. An operator that we shall

use throughout this manuscript is the annihilation operator, a. It is defined
in the number basis as follows: a|n〉 =

√
n|n− 1〉. It is intuitive to use the

number basis when considering canonical coherent states because they are
defined explicitly in terms of their expansion in the number basis. We shall
see such definitions shortly.

In 1926, Erwin Schrödinger attempted to find a “classical” solution to the
Quantum Harmonic Oscillator problem [7], similar to Planck’s linear oscilla-
tor idea [8]. In his landmark paper, Schrödinger defined such a state solution
as a “minimum uncertainty” Gaussian wavepacket. Initially, Schrödinger
only considered the “minimum uncertainty” states that satisfied the quan-
tum harmonic oscillator problem. 35 years later, Roy Glauber - completely
independent of Schrödinger - constructed three general definitions for such
“minimum uncertainty” states [9]. Glauber named them “Coherent States”.

1.1. Properties of the Canonical Coherent State. Roy Glauber gave
three properties that a Coherent State must satisfy. In modern literature,
these states are referred to as Canonical Coherent States. We will use the
same nomenclature here. We can prove all three of his statements, with the
detailed method for doing so shown below.

Definition 1.1. The coherent state, |α〉, is defined to be the normalised
eigenstate of the annihilation operator, a:

a|α〉 = α|α〉, α ∈ C

Thus, the coherent state may be written as |α〉 = e−
|α|2

2
∑∞
n=0

αn√
n!
|n〉

We shall prove that the explicit equation for |α〉, given in Definition 1.1, is
that of a canonical coherent state if and only if |α〉 is an eigenstate of the
annihilation operator.

Proof. [⇒] We first start off by proving the fact that the canonical coherent
state is an eigenstate of the annihilation operator, using the explicit defini-
tion of |α〉 stated above. Recalling the action of the annihilation operator
on the number basis, a|n〉 =

√
n|n− 1〉, the eigenstate property becomes

straightforward to prove.

a|α〉 = e−
|α|2

2

∞∑
n=1

[
αn√
n!

]√
n|n− 1〉 = αe−

|α|2
2

∞∑
n=1

αn−1√
(n− 1)!

|n− 1〉

= αe−
|α|2

2

∞∑
m=0

αm√
(m)!

|m〉 Having relabelled (n− 1)→ m

= α|α〉

Hence, we have just shown that the canonical coherent state is indeed an
eigenstate of the annihilation operator. �
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Proof. [⇐] We must now prove that the definition of any normalised eigen-
state of the annihilation operator, say |ϕ〉, matches that of the canonical
coherent state defined above. We start off by recalling the fact that any
state |ϕ〉 can be written as |ϕ〉 =

∑∞
n=0 cn|n〉, where cn ∈ C. We may apply

the annihilation operator to this state: a|ϕ〉 =
∑∞
n=0 cn

√
n|n− 1〉. At the

beginning of this proof, we assumed that |ϕ〉 is an eigenstate of the anni-
hilation operator. That is to say, for some eigenvalue α ∈ C, we have that
a|ϕ〉 = α|ϕ〉 =

∑∞
n=0 αcn|n〉. For these two states to be equal, we must have

that their components are equal too. Upon setting these two equations for
a|ϕ〉 to be equal, we get the following relation.

∞∑
n=1

cn
√
n|n− 1〉 =

∞∑
n=0

αcn|n〉

Knowing that the number basis is an orthonormal basis of our Hilbert Space,
we may think to apply a bra 〈m| to this relation. We then achieve the
following, more intuitive, condition that the coefficients must satisfy in order
for the two expressions for a|ϕ〉 to be equal.

∞∑
n=1

cn
√
n 〈m|n− 1〉 !=

∞∑
n=0

αcn 〈m|n〉

⇒ cm+1
√
m+ 1 = αcm

We now have an equation to solve in order to find the coefficients of |ϕ〉.
Starting from c0 = C, we can proceed by considering the first few terms of
the iteration.

c1 =
α√
1
c0 =

α√
1
C

c2 =
α√
2
c1 =

α2
√

2 · 1
C

c3 =
α√
3
c2 =

α3
√

3 · 2 · 1
C

c4 =
α√
4
c3 =

α4
√

4 · 3 · 2 · 1
C

By induction, we see that cn = αn√
n!
C. Hence, |ϕ〉 =

∑∞
n=0

αn√
n!
C|n〉. In order

to evaluate C, we must consider the fact that |ϕ〉 is normalised. That is, we
require the following to hold.

1 != 〈ϕ|ϕ〉 =
∞∑

n,m=0

ᾱnαm√
m! ·
√
n!
C2 〈m|n〉 =

∞∑
n=0

|α|2n

n!
C2

= e|α|
2
C2

Therefore, we have that C = e−
|α|2

2 and hence |ϕ〉 = e−
|α|2

2
∑∞
n=0

αn√
n!
|n〉.

Thus, |ϕ〉 gives the definition of a canonical coherent state, from the fact
that it is a normalised eigenstate of the annihilation operator. �
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Theorem 1.2. The coherent state |α〉 can be obtained by applying
the displacement operator, D(α), to the vacuum state of the quantum
harmonic oscillator, |0〉.

|α〉 = D(α)|0〉, where D(α) = eαa
†−ᾱa

It is also worth noting that the α present here is the same α defined in
Definition 1.1, α is an eigenvalue of the annihilation operator.

Proof. We may rewrite the displacement operator in a different way, us-
ing a variant of the Baker-Campbell-Hausdorf formula. The formula states
that, for not necessarily commuting Hilbert Space operators X and Y ,
eXeY e−

1
2 [X,Y ] = eX+Y . By first noticing that [a†, a] = −1, we can apply

this formula to the displacement operator defined by D(α) = eαa
†−ᾱa.

Using X = αa† and Y = −ᾱa in the Baker-Campbell-Hausdorf formula,
we get the following result.

D(α) = eαa
†−ᾱa = eαa

†
e−ᾱae−

[αa†,−ᾱa]
2 = e−

|α|2
2 eαa

†
e−ᾱa

This is a result that was explained in detail by Mandel [10]. We may now
use the Taylor Series of the exponential function, centred at the origin, to
rewrite the displacement operator further.

D(α) = e−
|α|2

2

∞∑
n=0

(
αa†

)n
n!

∞∑
m=0

(−ᾱa)m

m!

In order to see the action of the displacement operator on |0〉, we must first
see how

∑∞
m=0

(−ᾱa)m

m! operates on the vacuum state.

∞∑
m=0

(−ᾱa)m

m!
|0〉 =

(−ᾱa)0

0!
|0〉+

(−ᾱa)1

1!
|0〉+

(−ᾱa)2

2!
|0〉+

(−ᾱa)3

3!
|0〉+ . . .

= |0〉 − ᾱa|0〉+
ᾱ2a2

2
|0〉 − ᾱ3a3

6
|0〉+ . . .

= |0〉 because a|0〉 = 0

This shows us that the first summation term of the displacement operator
behaves like the identity operator on |0〉. This simply means that we can
disregard this term of the displacement operator when considering the action
of D(α) on the vacuum state. We can now discuss the action of the remaining
terms of the displacement operator on the vacuum state.

e−
|α|2

2

∞∑
n=0

(
αa†

)n
n!

|0〉 = e−
|α|2

2

∞∑
n=0

αn

n!

(
a†
)n
|0〉 = e−

|α|2
2

∞∑
n=0

αn

n!

√
n!|n〉

= e−
|α|2

2

∞∑
n=0

αn√
n!
|n〉 = |α〉
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Collecting the action of both summation terms of the displacement operator,
we see that indeed the canonical coherent state is produced as a result of
the displacement operator acting on the vacuum state. �

The next statement involves the position and momentum operators, denoted
by q̂ and p̂ respectively. These operators act on a wavefunction, ψ(x, t), in
the following way.

q̂ψ(x, t) = xψ(x, t) p̂ψ(x, t) = −i~∂ψ(x, t)
∂x

This is where ~ is known as Planck’s constant. These operators can be
written in terms of annihilation and creation operators, using the Stone-Von
Neumann uniqueness theorem [11] and the fact that [a, a†] = aa†−a†a = 1.
The next statement is given below.

Theorem 1.3. The coherent state |α〉 is a quantum state with a mini-
mum uncertainty property. That is to say,

(∆αq̂)2(∆αp̂)2 =
(

1
2

)2

This becomes easier to see if we define the coordinate and momentum
operators (q̂, p̂) in the following way.

q̂ =
1√
2

(
â+ â†

)
p̂ =

1

i
√

2

(
â− â†

)

Proof. We shall prove that the canonical coherent state is indeed a quantum
state with a minimum uncertainty property. From Definition 1.1, we have
that a|α〉 = α|α〉, where α ∈ C and 〈α|α〉 = 1. This implies that both
〈α|a†a|α〉 = |α|2 and 〈α|a† = 〈α|ᾱ are true. Thus, we can use the linearity
of these quantum operations to assert that the following results hold.

〈α|(a+ a†)|α〉 = (α+ ᾱ)

〈α|(a− a†)|α〉 = (α− ᾱ)

〈α|(a+ a†)(a+ a†)|α〉 = (α+ ᾱ)2 + 1

〈α|(a− a†)(a− a†)|α〉 = (α− ᾱ)2 − 1

Using these identities, we can compute the variance of the coordinate and
momentum operators in the canonical coherent state. Referring to the def-
initions of p̂ and q̂ in terms of creation and annihilation operators, we can
compute the following results.

(∆αp̂)2 =
〈
p̂2
〉
α
− (〈p̂〉α)2 =

1
2
〈α|(a+ a†)2|α〉 − 1

2

(
〈α|(a+ a†)|α〉

)2

=
1
2

((a+ a†)2 + 1− (a+ a†)2) =
1
2
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We can then follow a similar argument for the variance of the position op-
erator, q̂.

(∆αq̂)2 =
〈
q̂2
〉
α
− (〈q̂〉α)2 = −1

2
〈α|(a− a†)2|α〉+

1
2

(
〈α|(a− a†)|α〉

)2

=
1
2

(−(a− a†)2 + 1 + (a− a†)2) =
1
2

We can multiply these two results together to prove that |α〉 is indeed a
minimum uncertainty state. That is to say that it saturates the equality in

Heisenberg’s uncertainty relation: (∆αq̂)2(∆αp̂)2 =
(

1
2

)2
. �

Glauber’s definition of the canonical coherent state describes only a small
subset of quantum states that are said to be coherent. The coherence of a
quantum state may take a range of values and can indeed be measurable. It
is easier to define a set of states that are not coherent rather than the set
of states that possess some coherence. In the next section, we shall define
such incoherent states and discuss some necessary background mathematics.
This will set the table for analysis to begin on coherence measures.

2. Incoherence, Functionals and Matrix Norms

In this section, we shall construct the framework necessary to understand
how to quantify coherence. We first begin by defining the set of states that
are not coherent, known as incoherent states.

2.1. Incoherent States. As mentioned previously, coherence is a basis-
dependent concept. That is to say, if a state |ϕ〉 can be represented in multi-
ple distinct bases spanning the same Hilbert space, then the coherence of |ϕ〉
may not be equal to the coherence of the same state in different basis repre-
sentations. This will become clear when we define incoherent states. Using
the line of thought given by Streltsov [12], we state that incoherence must be
defined in a chosen basis: We define what a d-dimensional incoherent state
is with respect to the number basis.

Definition 2.1. An d-dimensional incoherent state, δ̂, is defined to be
a diagonal density matrix with respect to the chosen basis of the d-
dimensional Hilbert space, H. That is to say, an incoherent state defined
in the number basis is given by the following equation.

δ̂ =
d−1∑
i=0

δi|i〉〈i|

The δi satisfy both 0 ¬ δi ¬ 1 and
∑d−1
i=0 δi = 1. We call all density

matrices that are diagonal in this space incoherent, i.e., in the set of
incoherent states, I.

From Definition 2.1, we can claim that a state, ρ̂, is coherent if and only
if ρ̂ /∈ I. Speaking more abstractly, if the state ρ̂ has at least one non-zero
off-diagonal element, then we can say that ρ̂ possesses some coherence. We



7

have just seen that quantum states can be classified into either coherent
states or incoherent states. The same is true for quantum operations.

2.2. Quantum Operations. The notion of quantum operations is far from
specific, describing a subset of mathematical transformations that a quan-
tum system can undergo. Throughout this manuscript, we will be only con-
sidering those operations that act on density operators of quantum states.
Karl Kraus concretely defined such operations in terms of matrices, known
as Kraus Operators [13].

Theorem 2.2 (Kraus's Theorem). Let H and H′ be d-dimensional
Hilbert Spaces. Let Φ be a quantum operation mapping the density
matrices acting on H to those acting on H′. Then there exists matrices
{Kn}1¬n¬d, and their corresponding Hermitian conjugates {K†n}1¬n¬d,
such that Φ can be written in the following way.

Φ(ρ̂) =
∑
n

Knρ̂K
†
n and

∑
n

K†nKn ¬ 1

The quantum operation Φ is known as a trace-preserving operation if
and only if

∑
nK

†
nKn = 1

A variant of this theorem was proved nicely by Nielsen and Chuang [14].
Furthermore, we will only be implementing quantum operations that are
trace-preserving: This property is explicitly defined by the mathematical
condition imposed on the Kraus Operators. These trace-preserving quan-
tum operations are known as channels and will be the main focus of this
section. It is important to note that some authors use the term Completely
Positive Trace-Preserving Map instead of Quantum Channel, as discussed
by Weedbrook [15]. Just like quantum states, we can classify quantum op-
erations into coherent operations and incoherent operations.

Definition 2.3. Let δ̂ ∈ I and let Φ be a quantum channel. The quan-
tum channel Φ is said to be an incoherent quantum channel if and only
if Φ(δ̂) ∈ I for all δ̂ ∈ I. In terms of its Kraus decomposition, this can
be informally written as

∑
nKnIK

†
n ⊂ I

To illustrate this further, here is an example of a quantum operation that
we shall use extensively throughout this manuscript. It is described much
more comprehensively by Imre [16].

Definition 2.4. The Dephasing map is a quantum operation, Φ, that
acts on a quantum state, ρ̂, in the following way.

ρ̂ 7→ Φ(ρ̂) =
∑
n

|n〉〈n|ρ̂|n〉〈n|
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Colloquially speaking, we say that this mapping diagonalises any density
matrix, ρ̂.

We will soon see how important incoherent quantum channels are when
investigating the worthiness of coherence measures. For now, we shall state
another mathematical concept that is essential in the process of constructing
coherence measures.

2.3. Defining Functionals and Matrix Norms. In order to quantify
coherence, we require a mapping that takes the set of density matrices in a
Hilbert Space to the set of real numbers. This is known as a functional. We
can define this formally [17].

Definition 2.5. A real, linear functional, f , is a mapping from a vector
space X to the real numbers, R. That is to say,

X 7→ f [X] ⊆ R
We will only consider the functionals that operate on the Hilbert Space.

In pursuance of constructing a functional that maps from the set of density
matrices to R, we may consider the following well-known functional.

Definition 2.6. A Matrix Norm is a function that assigns a strictly
positive length to each matrix in the vector space Cm×n.
It is a mapping ‖·‖ : Cm×n → R that satisfies the following properties.

For all matrices A, B ∈ Cm×n and for all scalars α ∈ C:
• ‖A‖  0
• ‖A‖ = 0 if and only if Aij = 0 for all 1 ¬ i, j ¬ m,n
• ‖αA‖ = |α| ‖A‖
• ‖A+B‖ ¬ ‖A‖+ ‖B‖

Matrix norms are a key ingredient in the construction of coherence mea-
sures. A more comprehensive definition of the matrix norm was given by
Meyer [18]. We shall discuss examples of matrix norms below.

Naively, the first thing that comes to mind when thinking of matrix norms
are the entry-wise matrix norms. These are norms that treat A ∈ Km×n as
a vector of size mn. One of the most general entry-wise norms is defined in
the following way, with a more comprehensive definition given by Ding et.
al. [19].
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Definition 2.7. For numbers p, q ∈ N, we define the Lp,q norm of a
matrix A ∈ Km×n using the subsequent formula.

‖A‖p,q =

 n∑
j=1

(
m∑
i=1

|aij |p
) q
p


1
q

There is a specific case of the Lp,q norm that we shall use later in this
manuscript. It is stated as an explicit example below.

Example 2.8. The well-known Hilbert-Schmidt norm, also known as
the Frobenius norm, of a matrix A ∈ Km×n can be defined as the Lp,q
norm when p = q = 2. That is,

‖A‖HS =

√√√√ m∑
i=1

n∑
j=1

|aij |2 =
√

trace(A†A)

A more comprehensive discussion of the Hilbert-Schmidt norm is given by
Reed and Simon [20]. Now we must discuss a more important type of norm
in the theory of coherence measures: the Schatten p-norm [21].

Definition 2.9. For a number p ∈ N, we define the Schatten p-norm of
a matrix A ∈ Km×n using the following equation.

‖A‖p =

∑
n1

spn(A)

 1
p

The scalars s1(A)  s2(A)  . . .  sn(A)  . . .  0 are the singular

values of A and the eigenvalues of the Hermitian operator |A| =
√

(A†A).

The Schatten p-norm can also be written as ‖A‖pp = tr(|A|p)

As we have done with the Lp,q entry-wise norm, we shall provide a specific
example of the Schatten p-norm and study its properties. The most trivial,
and versatile, form of the Schatten p-norm is the l1 norm: we define it below.

Example 2.10. The l1 norm of a matrix A ∈ Km×n is defined as the
Schatten p-norm of the matrix A when p = 1.

‖A‖1 =
∑
n1

sn(A)

Also known as the trace norm; it may be written as ‖A‖1 = tr(|A|)
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As an aside, recall that any function f : R → R applied to a Hermitian
operator A is as follows [22].

f(A) =
∑
n

f(an)|n〉〈n|

This is where
∑
n an|n〉〈n| is the spectral decomposition of A. We say that

|n〉〈n| ≡ Pn are the spectral projections of A. We also know that the normal
matrix A can be written as A = UMU † [23]. With these facts, it is trivial
to show that the trace norm of M is the sum of the absolute values of its
eigenvalues, i.e. ‖M‖1 =

∑
n |λn|. It is beneficial to note that we can also

write the spectral decomposition of M as M =
∑
n an|n〉〈n|.

The trace norm is indeed a norm because the subsequent properties can be
proven to be satisfied: homogeneity, positive definiteness, and the triangle
inequality [24]. One coherence measure I shall discuss in this manuscript will
involve the l1 norm of the half-distance between two density matrices, ρ̂ and
σ̂. This is known as the trace distance [25].

There is a rather inclusive set that we require all states and density matrices
to be an element of in finite-dimensional Hilbert spaces. Every element of
this set is well-defined under an l1 norm. Let us explain this further and
discuss the importance of this set in our line of investigation.

2.4. The Importance of Trace Class. We shall state a property that all
density matrices must exhibit, when considering them in finite-dimensional
Hilbert spaces, and the significance of it. The following definition gives the
condition for which bounded linear operators [26] must satisfy in order to
be considered trace class.

Definition 2.11. A bounded linear operator A over a Hilbert space, H,
is said to be in the trace class, if the following inequality holds.

‖A‖1 = tr(|A|) <∞
This can also be written in terms of the inner product and any orthonor-
mal basis {ek}k∈N⋃{0}.∑

k

〈√
A†A ek, ek

〉
<∞

Definition 2.11 follows from the definition of the trace of an operator, tr(A) =∑
k 〈A ek, ek〉, as measured in an orthonormal basis, {ek}. When the Hilbert

space, H, is finite-dimensional, every bounded operator defined on it is trace
class. This is evident from the definition: all finite sums are convergent.

It begins to get interesting when we consider bounded linear operators on
infinite-dimensional Hilbert spaces. The trace of a linear operator in infinite
dimensions is not always defined: Hence, not all operators are trace class
in infinite dimensions. When the summation proposed in Definition 2.11 is
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convergent, we know that A is a trace class operator in infinite dimensions.
In order to illustrate this concept, we shall provide an example.

Example 2.12. The dephasing map, Φ, is indeed trace preserving. This
means that, if ρ̂ is trace class, then Φ(ρ̂) is also trace class. Recall that
the dephasing map is defined in the following way.

ρ̂ 7→ Φ(ρ̂) =
∑
n

|n〉〈n|ρ̂|n〉〈n|

Since the trace is invariant under a change of basis, we may pick an
orthonormal basis we are familiar with: the number basis. The sum we
have to test the convergence of takes the following form.

tr(|Φ(ρ̂)|) =
∞∑
n=0

〈√∑
i

|i〉〈i|ρ̂†|i〉〈i| ·
∑
j

|j〉〈j|ρ̂|j〉〈j| n, n
〉

=
∞∑
n=0

〈√∑
i

|i〉〈i|ρ̂†ρ̂|i〉〈i| n, n
〉

=
∞∑
n=0

〈n|
∑
i

(
|i〉〈i|

√
ρ̂†ρ̂|i〉〈i|

)
|n〉

=
∞∑
n=0

〈n|
√
ρ̂†ρ̂|n〉 = tr(|ρ̂|) = 1

Hence, we have just shown that, provided ρ̂ is a density matrix repre-
senting a quantum state, the dephasing map is trace preserving.

We shall use the dephasing map when constructing coherence measures,
taking note of its trace preserving property. We can now discuss the rules
that functionals need to satisfy to be called coherence measures.

3. Tenets for Measuring Coherence

We may now lay out the four properties that a coherence measure must
exhibit. These properties were first described this way by Baumgratz et. al.
[4]. The first characteristic that a coherence measure must possess involves
the incoherent state, δ̂.

(C1): A coherence measure, C(ρ̂), must vanish upon the insertion of
an incoherent state, δ̂. That is to say, for all δ̂ ∈ I,

C(δ̂) = 0

This is a rather trivial property, though an important one to note. We require
that any coherence measure will return the value of zero upon the measure-
ment of an incoherent state. The next property declares that a coherence
measure, C(ρ̂), does not increase under incoherent completely positive trace-
preserving operations, ΦICPTP(ρ̂).
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(C2a): A coherence measure, C(ρ̂), must be non-increasing under in-
coherent completely positive trace-preserving operations. This
means for all ΦICPTP(ρ̂),

C(ρ̂)  C(ΦICPTP(ρ̂))

We can write this property in more familair terms, using Kraus operators.
As we mentioned previously, incoherent quantum operations may be written
as Φ(ρ̂) =

∑
nKnρ̂K

†
n, where the Kraus operators satisfy KnIK

†
n ⊂ I and

are all of the same dimension (dout × din). The trace-preserving property
is being encompassed by the fact that

∑
nK

†
nKn = 1. One thing to add

is that an operation is completely positive if the Kraus operators defining
it are positive definite. For more on this idea, see the work of Bhatia [27].
Therefore, if Φ(ρ̂) =

∑
nKnρ̂K

†
n then (C2a) may be written in the following

form.

C(ρ̂)  C
(∑

n

Knρ̂K
†
n

)
This formulation of the ICPTP map is not the general form of a quantum
operation, however. This is because the ICPTP map disregards measure-
ment outcomes, meaning that the ICPTP map does not in general retain
any information about measurement outcomes. Thus, a more general defini-
tion of an incoherent operation is required: one that retains the information
regarding measurement outcomes.

An incoherent quantum operation that retains the information regarding
measurement outcomes is known as an incoherent measuring operation. Such
a definition was proposed by Zhao and Yu [28]. We define such operations
again by Kraus operators satisfying both KmIK

†
m ⊂ I and

∑
mK

†
mKm =

1. However, the Kraus operators describing the operations are of different
dimensions given by dm × din for each m. Considering the outcomes of the
measurement, we say that the state relating to the outcome m is given by

ρ̂m =
Kmρ̂K

†
m

pm

and arises with probability pm = tr[Kmρ̂K
†
m] such that

∑
m pm = 1. This

tells us that we can select certain measurement outcomes of the operation:
all of the information resulting from the outcome m is encoded by ρm and
pm. Thus, we require a stronger property than (C2a) that states that C(ρ̂)
is non-increasing independent of which measurement outcome we select.

(C2b): A coherence measure, C(ρ̂), must be non-increasing under in-
coherent measuring operations. We can take an average of co-
herence over all measurement outcomes n, with probabilities pn,
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in the following way.

Cave.(ρ̂) =
∑
n

pnC(ρ̂n)

This average of coherence, Cave.(ρ̂), must not be greater than
the coherence of the complete state, ρ̂. That is to say,

C(ρ̂) 
∑
n

pnC(ρ̂n)

This is a more general form of (C2a) as it allows us to select measurement
outcomes of the operation. We will see why we regard (C2b) in higher pri-
ority than (C2a) later in this section.

In order to understand the fourth property that a coherence measure must
satisfy, we must first discuss what it means for a functional to be convex
[29].

Definition 3.1. A real, linear functional f , defined on a convex subset
of a vector space X, is convex if and only if, ∀ u, v ∈ X and 0 ¬ α ¬ 1,
the following inequality holds.

f((1− α)u+ αv) ¬ (1− α)f(u) + αf(v)

A convex subset of a vector space X is one in which every element of the
subset can be connected by a straight line that lies in the subset itself.

The fourth condition that coherence measures must satisfy involves the the-
ory of mixing quantum states. We take a set of density matrices, {ρ̂n}, and
arrange them into a convex combination, using probabilities pn as coeffi-
cients such that

∑
n pn = 1. We call this a statistical ensemble of quantum

states. From the definition of coherence, it would prove intuitive that the
statistical ensemble is more incoherent. In a statistical ensemble there are
multiple wavefunctions collectively describing the system, therefore, loosely
speaking, there is a smaller chance that all of these wavefunctions describ-
ing the system have a constant phase relation. Therefore, we require that
any coherence quantifier measures this potential decrease in coherence of a
system. We can encompass this with our fourth and final condition.

(C3): A coherence measure, C(ρ̂), must be non-increasing under mix-
ing of quantum states. This means that, for any set of states
{ρ̂n}, as described previously, with corresponding probabilities
pn  0 satisfying

∑
n pn = 1,

C(ρ̂) 
∑
n

pnC(ρ̂n)
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This is an essential property that possible candidates need to satisfy in order
to be called coherence measures. The importance of convexity, in the context
of coherence measures, was discussed in detail by Streltsov et. al. [30]. The
importance of all these properties are not equal: It suffices to prove (C1),
(C2b) and (C3) to show that a functional is a coherence measure. This
argument can be seen below:

C(ΦICPTP(ρ̂)) = C

(∑
n

pnρ̂n

)
(C3)
¬ pnC

(∑
n

ρ̂n

)
(C2b)
¬ C (ρ̂)

Hence, we have that the properties (C3) and (C2b) collectively imply (C2a).
Therefore, when we begin to discuss candidates for coherence measures, it
is sufficient to prove that properties (C1), (C2b) and (C3) are satisfied by
candidate functionals.

4. Candidates for Coherence Measures

In this section, I will discuss two widely postulated candidates for coherence
measures: The relative entropy [31] and l1 norm of coherence [32]. I will
then provide three original candidates for measuring coherence, analysing
the methodology behind constructing such measures. I hope that this section
provides some insight into the difficulty of developing coherence measures.

4.1. Distinguishability Between a State and its Diagonal. The first
coherence measure we will discuss is the relative entropy of coherence. This
measure was engineered from the Kullback-Leibler divergence [33]: A mea-
sure of how one probability distribution differs from another. For density
matrices ρ̂ and σ̂, the Kullback-Liebler divergence of ρ̂ and σ̂ is given by

DKL(P ||Q) = tr (ρ̂ log ρ̂− ρ̂ log σ̂)

This looks like a distance measure: One can think of it as measuring the
distinguishability of two quantum states. Hence, this could make a suitable
measure of coherence, measuring the distinguishability of a state, ρ̂, to the
closest incoherent state, δ̂.

Definition 4.1. Given a quantum state ρ̂ and an incoherent state δ̂,
the Relative Entropy of Coherence is defined in the following way.

CRel Ent.(ρ̂) = min
δ̂∈I

tr
(
ρ̂ log ρ̂− ρ̂ log δ̂

)

Though the choice of δ̂ ∈ I may seem arbitrary, Definition 4.1 merely states
that we choose the closest incoherent state to ρ̂. As we have mentioned
previously, it suffices to prove (C1), (C3) and (C2b). Often, it is the latter
property that is difficult to prove. We shall prove the conditions in that order,
leaving (C2b) for last. The first condition, (C1), is generally the easiest one
to prove: Let ρ̂ = δ̂ ∈ I and observe whether the functional vanishes. The
following argument can be made for the satisfaction of (C1) by Relative
Entropy of Coherence.



15

(C1): Let ρ̂ = δ̂ ∈ I, then the relative entropy of δ̂ and δ̂ gives the following
result.

CRel Ent.(δ̂) = min
δ̂∈I

tr
(
δ̂ log δ̂ − δ̂ log δ̂

)
= min

δ̂∈I
tr (0) = 0

This proves to be intuitive: If both states are equal then they are
indistinguishable. Therefore, a returned value of zero makes sense
mathematically.

We can now discuss the fourth tenet: (C3). This states that we require the
functional to be convex. In order to prove this concisely, we shall consider
the satisfaction of (C3) for n ∈ {0, 1}.
(C3): We wish to prove that the relative entropy is convex using only four

arguments: ρ̂0, ρ̂1, δ̂0 and δ̂1 , with probabilities p0 and p1. We then
proceed in the following way.

CRel Ent.(p0ρ̂0 + p1ρ̂1) =

= tr
(
[p0ρ̂0 + p1ρ̂1] log (p0ρ̂0 + p1ρ̂1)− [p0ρ̂0 + p1ρ̂1] log

(
δ̂0 + δ̂1

))

¬ p0tr
(
ρ̂0 log ρ̂0 − ρ̂0 log δ̂0

)
+ p1tr

(
ρ̂1 log ρ̂1 − ρ̂1 log δ̂1

)
= p0 · CRel Ent.(ρ̂0) + p1 · CRel Ent.(ρ̂1)

It can be shown that this proof extends to a general mixture of the system.
Hence, we have just shown that the relative entropy satisfies (C3). We must
now take a diversion from our investigation, in order to understand the
property of (C2b) and how we go about proving its satisfaction. It is difficult
to prove this inequality directly. It is far easier to prove smaller properties,
as part of a larger argument, to prove that a distance measure can satisfy
(C2b). That much larger argument, which uses the relationship between
coherence and entanglement measures [34], is explained in detail below. We
have to discuss (C2a) first: Then we can state a corollary to bridge the gap
toward the examination of (C2b). It is trivial to see that (C2a) boils down
to proving the following inequality for any distance measure, D(ρ̂||δ̂).

D(ρ̂||δ̂)  D(
∑
n

Knρ̂K
†
n||
∑
n

Knδ̂K
†
n)

This leads to:

Theorem 4.2. For any, not necessarily incoherent, CPTP map ΦCPTP,
given by ΦCPTP(ρ̂) =

∑
nKnρ̂K

†
n and

∑
nK

†
nKn = 1, we have that

D(ρ̂||δ̂)  D(ΦCPTP(ρ̂)||ΦCPTP(δ̂))

This is a generalisation of (C2a) and is true in the context of entangle-
ment measures.
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Proof. From the work of Vedral and Plenio [35], the case for the following
argument is laid out in detail. They illustrate the fact that a complete mea-
surement [36] may be written as a unitary operation, involving the partial
trace, over an extended Hilbert space, H⊗Hn, where the dimension of Hn
is n. Let {|ei〉} be an orthonormal basis spanning Hn, |u〉 be a unit vector
in Hn and {Ki} be a set of Kraus operators acting in H. Using these, we
may define the following operator [37], W .

W =
∑
i

Ki ⊗ |ei〉〈u|

Then W †W = 1 ⊗ Pu, where the projection Pu is given by Pu = |u〉〈u|.
This tells us that there exists a unitary operator U over H⊗Hn, such that
W = U(1⊗Pu). This is because a unitary operator U satisfies U †U = 1. As
a result, we can allow these aforementioned operators to act on a Hermitian
matrix A on H in the following way.

U(A⊗ Pu)U † =
∑
i,j

KiAK
†
j ⊗ |ei〉〈ej |(1)

We may now apply the partial trace, using the definition given in [38], to
the above operation. The result should now look familiar.

tr2

{
U(A⊗ Pu)U †

}
=
∑
i

KiAK
†
i(2)

This is the Kraus decomposition of an operator acting on A. If a distance
measure satisfies D(trpρ̂||trpρ̂) ¬ D(ρ̂||δ̂) and D(Uρ̂U †||Uδ̂U †) = D(ρ̂||δ̂) =
D(ρ̂⊗ Pu||δ̂ ⊗ Pu), then the following set of statements are true.

D

(∑
i

Kiρ̂K
†
i ||
∑
i

Kiδ̂K
†
i

)
= D

(
tr2

{
U(ρ̂⊗ Pu)U †

}
|| tr2

{
U(δ̂ ⊗ Pu)U †

})

¬ D
(
U(ρ̂⊗ Pu)U † ||U(δ̂ ⊗ Pu)U †

)

= D
(
ρ̂⊗ Pu || δ̂ ⊗ Pu

)
= D(ρ̂ || δ̂)

�

The above result proves (C2a), provided the assumptions are found to be
true. This inspired me to use the set of properties regarding entanglement
measures found in [35] for our investigation of coherence measures. We can
state a corollary that can be extrapolated from the above result.

Corollary 4.3. It can be shown that, for a complete set of orthonormal
projectors {Pn}, ρ̂ 7→

∑
n Pnρ̂Pn is a CPTP map. Hence, by Theorem

4.4, the following result holds.

D(ρ̂||δ̂)  D(
∑
n

Pnρ̂Pn||
∑
n

Pnδ̂Pn))
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We want the distance measure in question to also satisfy the following the-
orem.

Theorem 4.4. If a distance measure D(ρ̂||δ̂) satisfies all of the above
assumptions and D(

∑
n Pnρ̂Pn||

∑
n Pnδ̂Pn)) =

∑
nD(Pnρ̂Pn||Pnδ̂Pn)),

then

D(ρ̂||δ̂) 
∑
n

D(Knρ̂K
†
n||Knδ̂K

†
n))

Proof. From the previous proof, we use Equations 1 and 2 again. We can
use the argument given for Equation 2 to state the subsequent equality. For
Pi = |i〉〈i|, we have that

tr2

{
1⊗ Pi U(A⊗ Pu)U † 1⊗ Pi

}
= KiAK

†
i

Our distance measure D(ρ̂||δ̂) satisfies Corollary 4.3, decreases under par-
tial tracing and is invariant under a tensor product with an orthonormal
projector. This means that we can proceed in the following way.∑
i

D
(
tr2

{
1⊗ Pi U(ρ̂⊗ Pu)U † 1⊗ Pi

}
||tr2

{
1⊗ Pi U(δ̂ ⊗ Pu)U † 1⊗ Pi

})
¬
∑
i

D
(
1⊗ Pi U(ρ̂⊗ Pu)U † 1⊗ Pi||1⊗ Pi U(δ̂ ⊗ Pu)U † 1⊗ Pi

)
¬ D

(
U(ρ̂⊗ Pu)U †||U(δ̂ ⊗ Pu)U †

)
= D

(
ρ̂⊗ Pu||δ̂ ⊗ Pu

)
= D(ρ̂ || δ̂)

From this result, and the assumption that
∑
i piD

(
ρ̂i
pi
|| δ̂iqi
)
¬
∑
iD(ρ̂i||δ̂i),

we conclude: ∑
i

piD

(
ρ̂i
pi

∣∣∣∣∣
∣∣∣∣∣ δ̂iqi
)
¬ D(ρ̂||δ̂)

�

Thus, proving the satisfaction of (C2b), and hence (C2a), whittles down to
proving these properties of the functional. We have assumed the satisfaction
of various characteristics in both proofs. For completeness, I shall list them
all below.

(F2): D(Uρ̂U †||Uδ̂U †) = D(ρ̂||δ̂), for any unitary operator, U .

(F3): D(trp ρ̂||trp δ̂) ¬ D(ρ̂||δ̂), where trp is the partial trace.

(F4):
∑
i piD

(
ρ̂i
pi

∣∣∣∣∣∣∣∣ δ̂iqi
)
¬
∑
iD(ρ̂i||δ̂i), for probabilities pi and qi.
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(F5a): D(
∑
i Piρ̂Pi||

∑
i Piδ̂Pi)) =

∑
iD(Piρ̂Pi||Piδ̂Pi))

(F5b): D
(
ρ̂⊗ Pu || δ̂ ⊗ Pu

)
= D(ρ̂ || δ̂), for Pu = |u〉〈u|

Note that these properties are taken from [35].

We have just seen that it is sufficient to prove these properties, in order
to show the satisfaction of (C2b) for functionals in the form of distance
measures. We can show that the relative entropy satisfies these properties
too.

(F2): We may use an alternate definition of relative entropy, in terms of
the eigenvalues of ρ̂ and δ̂ [39]. This is given by

CRel Ent.(ρ̂) = min
δ̂∈I

tr
(
ρ̂ log ρ̂− ρ̂ log δ̂

)

= −
∑
i

λi log λi +
∑
j

ηj log ηj

where λi and ηi are the eigenvalues of ρ̂ and δ̂ respectively. Thus, it
suffices to prove that the eigenvalues of ρ̂ and δ̂ are invariant under
unitary operations. By the Spectral theorem, we may always find an
orthonormal basis, {|x〉} such that the following is true.

Uρ̂U † = U
∑
x

λx|x〉〈x|U † =
∑
x

λx|xU 〉〈xU |

For another orthonormal basis {|xU 〉} such that U |x〉 = |xU 〉. As a
result, the eigenvalues of a density matrix remain invariant under
a unitary transformation. Consequently, we can proclaim that the
relative entropy is similarly invariant.

(F3): Consider a quantum state, ρ̂ = ρ̂1 ⊗ ρ̂2, on a Hilbert space H =
H1 ⊗ H2. Let ρ̂1 = trH2 ρ̂. Then, we may compute CRel Ent.(ρ̂) =
CRel Ent.(ρ̂1 ⊗ ρ̂2).

CRel Ent.(ρ̂1 ⊗ ρ̂2) = tr[(ρ̂1 ⊗ ρ̂2) log(ρ̂1 ⊗ ρ̂2)− (ρ̂1 ⊗ ρ̂2) log(δ̂1 ⊗ δ̂2)]

We may manipulate an identity given by Brewer [42] to achieve the
following identity: log(A⊗B) = logA⊗ 1+ 1⊗ logB. We can now
use this identity in our equation for C(ρ̂1 ⊗ ρ̂2).

CRel Ent.(ρ̂1 ⊗ ρ̂2) = tr[(ρ̂1 ⊗ ρ̂2)(log ρ̂1 ⊗ 1 + 1⊗ log ρ̂2)

− (ρ̂1 ⊗ ρ̂2)(log δ̂1 ⊗ 1+ 1⊗ log δ̂2]

We can then proceed by using the mixed-product property of the
tensor product, (A ⊗ B)(C ⊗ D) = (AB) ⊗ (CD), along with an
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appropriate factorisation.

= tr[(ρ̂1 log ρ̂1 − ρ̂1 log δ̂1)⊗ ρ̂2 + ρ̂1 ⊗ (ρ̂2 log ρ̂2 − ρ̂2 log δ̂2)]

= tr[(ρ̂1 log ρ̂1 − ρ̂1 log δ̂1)] · tr[ρ̂2] + tr[ρ̂1] · tr[(ρ̂2 log ρ̂2 − ρ̂2 log δ̂2)]

= CRel Ent.(ρ̂1) · tr[ρ̂2] + tr[ρ̂1] · CRel Ent.(ρ̂2) = CRel Ent.(ρ̂1) + CRel Ent.(ρ̂2)

Since ρ̂1 and ρ̂2 are density matrices, they are both of trace one.
Thus, the last equality is trivial. We can now calculate C(trH2 {ρ̂1 ⊗ ρ̂2}).

CRel Ent.(trH2 {ρ̂1 ⊗ ρ̂2}) = tr[(trH2 {ρ̂1 ⊗ ρ̂2}) log(trH2 {ρ̂1 ⊗ ρ̂2})

− (trH2 {ρ̂1 ⊗ ρ̂2}) log(trH2

{
δ̂1 ⊗ δ̂2

}
)]

By our assumption, ρ̂1 = trH2 ρ̂. Thus, we can substitute this in to
the equation above.

CRel Ent.(trH2 {ρ̂1 ⊗ ρ̂2}) = tr[(ρ̂1 log ρ̂1 − ρ̂1 log δ̂1)] = CRel Ent.(ρ̂1)

We have proven that the relative entropy is always non-negative.
Therefore, C(ρ̂1) +C(ρ̂2)  C(ρ̂1). As a result, C(ρ̂)  C(trH2 {ρ̂}).
A similar proof can be shown for the consideration of the alterna-
tive choice of partial trace, trH1 . It is completely analogous to this
argument. Hence, the relative entropy of coherence decreases under
partial tracing.

(F4): Here, we may use the axioms of the logarithm [43] in the following
way.

∑
i

D(ρ̂i||δ̂i) = tr
(
ρ̂i log ρ̂i − ρ̂i log δ̂i

)
=
∑
i

pi · tr
(
ρ̂i
pi

log
(
ρ̂i
pi

)
− ρ̂i
pi

log

(
δ̂i
qi

))
+
∑
i

pi · tr (log pi − log qi)

=
∑
i

pi · tr
(
ρ̂i
pi

log
(
ρ̂i
pi

)
− ρ̂i
pi

log

(
δ̂i
qi

))
+
∑
i

pi log
(
pi
qi

)

We know that pi log
(
pi
qi

)
 0. Therefore, we can assert that

tr
(
ρ̂i log ρ̂i − ρ̂i log δ̂i

)
¬
∑
i

pi · tr
(
ρ̂i
pi

log
(
ρ̂i
pi

)
− ρ̂i
pi

log

(
δ̂i
qi

))

Hence, (F4) is satisfied by the relative entropy of coherence.

(F5a): Let {Pi} be a set of orthogonal projectors: Pi · Pj = δijPi [44]. We
know that the operation ρ̂ 7→

∑
i Piρ̂Pi diagonalises ρ̂. Therefore,

log(
∑
i Piρ̂Pi) =

∑
i Pi log(ρ̂)Pi. Then, we can spell this property of
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(F4) out for the relative entropy.

D(
∑

Piρ̂Pi||
∑

Piδ̂Pi) =

= tr

∑
i

Piρ̂Pi log

∑
j

Pj ρ̂Pj

−∑
i

Piρ̂Pi log

(∑
l

Plδ̂Pl

)

= tr

∑
i

Piρ̂Pi
∑
j

Pj log (ρ̂)Pj −
∑
i

Piρ̂Pi
∑
l

Pl log(δ̂)Pl



= tr

(∑
i

Piρ̂PiPi log (ρ̂)Pi −
∑
i

Piρ̂PiPi log(δ̂)Pi

)

=
∑
i

tr
(
Piρ̂PiPi log (ρ̂)Pi − Piρ̂PiPi log(δ̂)Pi

)
=
∑

D(Piρ̂Pi||Piδ̂Pi)

Hence, we have just seen that the relative entropy satisfies (F5a).

(F5b): Recall that the projector Pu, known as a rank-1 projector, is given in
terms of a unit vector |u〉, Pu = |u〉〈u|. Hence it is of trace one. Also, it
is important to recall that the trace function is multiplicative under
a tensor product [45]. We may proceed with the following argument.

D(ρ̂⊗ Pu||δ̂ ⊗ Pu) = tr

(
(ρ̂⊗ Pu) log

(
ρ̂⊗ Pu
δ̂ ⊗ Pu

))

= tr
(

(ρ̂⊗ Pu) log
(
ρ̂

δ̂

))
= tr

(
ρ̂ log

(
ρ̂

δ̂

))
tr(Pu)

= tr
(
ρ̂ log

(
ρ̂

δ̂

))
= D(ρ̂||δ̂)

Thus, the relative entropy is invariant under an outer product with
a single rank-1 projection operator.

All of these facts tell us that the relative entropy satisfies (C2b): Hence, the
relative entropy is indeed a proper coherence measure. We shall see more
from this functional later, when we begin to analyse the coherence of infinite-
dimensional systems. Another well-documented measure is the l1 norm of
coherence. We shall discuss its properties below.

4.2. Coherence in Terms of the Off-diagonal Elements. The l1 norm
of coherence can be derived easily. We first start off with the l1 norm of
the quantum state in question, ρ̂, minus its closest incoherent state. This
would be the incoherent state that minimises the distance, as measured by
a norm, between ρ̂ and the set of incoherent states, I. It can be shown that
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the closest incoherent state to ρ̂ is its diagonal form: ρ̂diag. Using Example
2.10, we get the following result.

Cl1(ρ̂) = ‖ρ̂− ρ̂diag‖1 =
∑
i,j

|ρ̂ij − ρ̂ii|

Therefore, we can write the l1 norm of coherence in terms of the off-diagonal
elements of the quantum state.

Definition 4.5. Given a quantum state ρ̂, the l1 norm of Coherence is
defined as:

Cl1(ρ̂) =
∑
i 6=j
|ρ̂ij |

Let us now discuss the properties of the l1 norm of coherence: To see if it
satisfies (C1)-(C3) and therefore be able to check whether it may be called
a coherence measure. The first property, (C1), is trivial to prove.

(C1): Let δ̂ ∈ I, then δ̂ is a density matrix, whose off-diagonal elements are
all zero. Thus, we achieve the following result.

Cl1(δ̂) =
∑
i 6=j
|δ̂ij | =

∑
i 6=j
|0| = 0

As we did with the relative entropy, we shall now prove (C3) for the l1 norm
of coherence.

(C3): We wish to prove that the l1 norm of coherence is convex using only
two arguments: ρ̂0, ρ̂1, with probabilities p0 and p1. We then proceed
in the following way.

Cl1(p0ρ̂0 + p1ρ̂1) =
∑
i 6=j
|p0[ρ̂0]ij + p1[ρ̂1]ij |

¬
∑
i 6=j
|p0[ρ̂0]ij |+

∑
i 6=j
|p1[ρ̂1]ij |

= p0
∑
i 6=j
|[ρ̂0]ij |+ p1

∑
i 6=j
|[ρ̂1]ij |

= p0 · Cl1(ρ̂0) + p1 · Cl1(ρ̂1)

If we proceed by induction, we will see that the l1 norm of coherence satisfies
(C3). We must now prove that the l1 norm of coherence satisfies (F2)-(F5),
as per our argument for the relative entropy.

(F2): We can show that the l1 norm of coherence is unitarily invariant.

Cl1(Uρ̂U †) = Cl1(ρ̂)
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To do this, we refer to the work of Watrous [46]. He states that
lp norms, for p ∈ [1,∞], are invariant under a unitary operation.
Therefore, we must write the l1 norm in its full form and apply a
unitary operation as follows.

Cl1(Uρ̂U †) =
∥∥∥Uρ̂U † − Uρ̂diagU

†
∥∥∥

1

=
∥∥∥U (ρ̂− ρ̂diag)U †

∥∥∥
1

= ‖ρ̂− ρ̂diag‖1 = Cl1(ρ̂)

Therefore, the l1 norm of coherence is unitarily invariant.

(F3): One can show that the following bound holds for any lp norm and
any bounded linear operator A defined on H = H1 ⊗ H2, by the
work of Rastegin [47].

‖trH1 {A} ‖p ¬ [dim(H1)](p−1)/p‖A‖p

By setting p = 1 and A = ρ̂− δ̂, we get the following inequality.

‖trH1

{
ρ̂− δ̂

}
‖1 ¬ [dim(H1)]‖ρ̂− δ̂‖1

Since dim(H1)  1 is true for any chosen H1, this inequality always
holds. Hence, the l1 norm of coherence decreases under partial trac-
ing. It is important to note that a similar argument can be made for
the alternative choice of partial trace, trH2 .

(F4): This is very straightforward to prove: we first calculate
∑
i piCl1(ρ̂i/pi).

∑
i

pi · Cl1
(
ρ̂i
pi

)
=
∑
i

pi ·
∥∥∥∥ ρ̂ipi − [ρ̂diag]i

pi

∥∥∥∥
1

=
∑
i

‖ρ̂i − [ρ̂diag]i‖1

=
∑
i

Cl1(ρ̂i)

So, in fact, we find that the l1 norm of coherence satisfies a strict
equality of (F4).

(F5a): We may use the longer form of Cl1(ρ̂) in order to prove this property.

Cl1(
∑
i

Pi ρ̂ Pi) =

∥∥∥∥∥∑
i

Pi ρ̂ Pi −
∑
i

Pi ρ̂diag Pi

∥∥∥∥∥
1

As ρ̂diag is already diagonalised, the projection operators have no
effect on ρ̂diag. Thus, we may rewrite the above equation in the
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following way.

Cl1(
∑
i

Pi ρ̂ Pi) =

∥∥∥∥∥∑
i

(Pi ρ̂ Pi − Pi ρ̂diag Pi)

∥∥∥∥∥
1

= tr

√∑
i

(Pi ρ̂ Pi − Pi ρ̂diag Pi)
†∑

i

(Pi ρ̂ Pi − Pi ρ̂diag Pi)


= tr

√∑
i

(Pi ρ̂ Pi − Pi ρ̂diag Pi) (Pi ρ̂ Pi − Pi ρ̂diag Pi)


= tr

√∑
i

(
Pi ρ̂2 Pi − 2Pi ρ̂ · ρ̂diag Pi + Pi ρ̂2

diag Pi
)

= tr

√∑
i

Pi
(
ρ̂2 − 2ρ̂ · ρ̂diag + ρ̂2

diag

)
Pi


= tr

(∑
i

Pi

√(
ρ̂2 − 2ρ̂ · ρ̂diag + ρ̂2

diag

)
Pi

)

=
∑
i

tr

(
Pi

√(
ρ̂2 − 2ρ̂ · ρ̂diag + ρ̂2

diag

)
Pi

)

=
∑
i

tr
(
Pi

√
( ρ̂− ρ̂diag)2Pi

)
=
∑
i

‖(Pi ρ̂ Pi − Pi ρ̂diag Pi)‖1 =
∑
i

Cl1(Pi ρ̂ Pi)

Thus, we can take the summation outside when projective measure-
ments operate on the l1 norm of coherence.

(F5b): We can compute Cl1(ρ̂⊗ Pu) explicitly.

Cl1(ρ̂⊗ Pu) = ‖ρ̂⊗ Pu − ρ̂diag ⊗ Pu‖1

= ‖ρ̂− ρ̂diag‖1 · ‖Pu‖1

= ‖ρ̂− ρ̂diag‖1

= Cl1(ρ̂)

Therefore, the l1 norm of coherence is invariant under a tensor prod-
uct with a rank-1 projection operator, Pu.

We have just seen that the l1 norm of coherence is indeed a coherence mea-
sure, using the analogy between entanglement and coherence measures.

4.3. Coherence in Terms of the Commutator. As we know, we can
quantify coherence in terms of how “off-diagonal” a quantum state is. Rather,
we can study the coherence in terms of how much a density matrix, ρ̂, differs
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from a diagonal matrix. One way in which we may strictly quantify this is
by using the number operator, N̂ , defined as N̂ =

∑
n |n〉〈n|. One can pose

the question: How well does the chosen state, ρ̂, commute with the num-
ber operator? As a result, we can observe how “diagonal” a chosen density
matrix is. It was this line of thought which led to the construction of the
following functional.

Definition 4.6. Given a quantum state ρ̂ and the number operator
N̂ =

∑
n |n〉〈n|, the Commutator of Coherence, C[·,·](ρ̂), as:

C[·,·](ρ̂) =
∥∥∥[ρ̂, N̂ ]

∥∥∥
1

This should tell us how incoherent a state is, by evaluating how much it
resembles a standard diagonal matrix. We shall now study whether C[·,·](ρ̂)
satisfies properties (C1)-(C3). It is trivial to see that (C1) is satisfied by this
potential measure.

(C1): Let δ̂ ∈ I, then δ̂ is a density matrix that commutes with any diag-
onal matrix. Therefore, δ̂ commutes with the number operator, i.e.
[δ̂, N̂ ] = 0. Thus, we achieve the following result.

C[·,·](δ̂) =
∥∥∥[δ̂, N̂ ]

∥∥∥
1

= ‖0‖1 = 0

Hence, (C1) is satisfied by the Commutator of Coherence. We may see that
(C3) is also satisfied.

(C3): The same set-up is carried out as before. Because of the linearity of
the commutator, and the fact that the trace norm is indeed convex,
we may proceed with the following argument.

C[·,·](
∑
n

pnρ̂n) =

∥∥∥∥∥[∑
n

pnρ̂n, N̂ ]

∥∥∥∥∥
1

=

∥∥∥∥∥∑
n

[pnρ̂n, N̂ ]

∥∥∥∥∥
1

=

∥∥∥∥∥∑
n

pn[ρ̂n, N̂ ]

∥∥∥∥∥
1

¬
∑
n

pn
∥∥∥[ρ̂n, N̂ ]

∥∥∥
1

=
∑
n

pnC[·,·](ρ̂n)

Hence, C[·,·](ρ̂) appeases (C3) and is therefore convex.

Unfortunately, the Commutator of Coherence violates (C2b). Rather than
going through all of the sub-properties of (C2b), we shall just discuss the
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condition it breaches.

(F3): Let ρ̂AB be any density matrix on HA ⊗HB. This can be examined,
using the partial trace, as

trB(ρ̂AB) =
∑
ijkl

cijkl|ai〉〈aj | 〈bl|bk〉 , cijkl ∈ C

We shall denote this as ρ̂A := trB(ρ̂AB) on HA of our described
system. It is also important to note that 〈bl|bk〉 = tr(|bl〉〈bk|) ∈ C.
We can apply this notation in order to investigate (F3) for C[·,·](ρ̂).

C[·,·](ρ̂A) =

∥∥∥∥∥∥[
∑
ijkl

cijkl|ai〉〈aj | 〈bl|bk〉 , N̂ ]

∥∥∥∥∥∥
1

=

∥∥∥∥∥∥
∑
ijkl

cijkl|ai〉〈aj | 〈bl|bk〉 N̂ − N̂
∑
pqrs

cpqrs|ap〉〈aq| 〈br|bs〉

∥∥∥∥∥∥
1

This looks promising, as 0 ¬ 〈bl|bk〉 ¬ 1 (from the fact that density
matrices are of trace one). Therefore, we might be able to prove
C[·,·](ρ̂AB)  C[·,·](ρ̂A) and, hence, show that C[·,·](ρ̂) decreases under
partial tracing. However, when we explicitly calculate C[·,·](ρ̂AB), we
soon experience problems.

C[·,·](ρ̂AB) =

∥∥∥∥∥∥[
∑
ijkl

cijkl|ai〉〈aj | ⊗ |bk〉〈bl|, N̂ ]

∥∥∥∥∥∥
1

=

∥∥∥∥∥∥
∑
ijkl

cijkl|ai〉〈aj | ⊗ |bk〉〈bl|N̂ − N̂
∑
pqrs

cpqrs|ap〉〈aq| ⊗ |br〉〈bs|

∥∥∥∥∥∥
1

=

∥∥∥∥∥∥
∑
n

∑
ijkl

cijkl 〈bl|n〉 |ai〉〈aj | ⊗ |bk〉〈n| −
∑
n

∑
pqrs

cpqrs 〈n|ap〉 |n〉〈aq| ⊗ |br〉〈bs|

∥∥∥∥∥∥
1

In general, we are unable to factorise and simplify the last equality.
We cannot expect anything well-behaved here. This is because the
commutator is a Lie algebra [48], whereas the tensor product inside
of a commutator is not a Lie algebra [49]. Hence, no smooth map-
ping exists to encode the transformation. More informally, we can
also see this by considering the fact that, in general, |ai〉 6= |n〉 and
〈n| 6= 〈bs| for all summation indices n, s and i.

It can be shown that the properties (F2), (F4), (F5a) and (F5b) are satisfied
by C[·,·](ρ̂). This is evidence that the method for constructing original coher-
ence measures is difficult: A promising functional like this fails due to the
fact that we cannot, in general, show that it decreases under partial tracing.

4.4. The Fidelity of Quantum Coherence. Another promising func-
tional that fails upon inspection of (C2b) is the fidelity of quantum coherence
defined below.
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Definition 4.7. If there exists a maximally distant incoherent state
δ̂∗ ∈ I to a given state ρ̂, the Fidelity of Quantum Coherence, CF (ρ̂), is
defined as:

CF (ρ̂) = 1−max
δ̂∈I

F (ρ̂, δ̂) = 1− tr(|
√
ρ̂

√
δ̂∗|)

It can also be written in a different form:

CF (ρ̂) = 1− tr
(√√

ρ̂ δ̂∗
√
ρ̂

)

It can be shown that the coherence measure induced by fidelity satisfies (C1),
(C2a) and (C3). However, it violates (C2b). We shall provide an original
counter-example that disproves (C2b) for the measure induced by fidelity.
We proceed by contradiction.

Recall, we require that the fidelity of quantum coherence satisfies the fol-
lowing inequality: CF (ρ̂) 

∑
n pnCF (ρ̂n). This may be written as CF (ρ̂) ∑

n pnCF (Knρ̂K
†
n/pn). I give the non-trivial two-dimensional Kraus opera-

tors below.

K1 =
(
a 0
0 b

)
K2 =

(
0 c
0 0

)
|a|2 = 1

|b|2 + |c|2 = 1

Using the conditions on the right, it is clear to see that the set of Kraus
operators {K1,K2} satisfy all of the necessary requirements upheld by Kraus
operators. The two-dimensional quantum state, ρ̂, and an incoherent state
yet to be determined, δ̂, are given below.

ρ̂ =

(
1
2

1
4

1
4

1
2

)
δ̂ =

(
x 0
0 y

)
We can now calculate ρ̂1 = K1ρ̂K

†
1 and ρ̂2 = K2ρ̂K

†
2. We shall first consider

the term p1CF (ρ̂1).

ρ̂1 = K1ρ̂K
†
1 =

(
a 0
0 b

)(1
2

1
4

1
4

1
2

)(
ā 0
0 b̄

)
=

(
1
2

ab̄
4

āb
4

|b|2
2

)
We may take the square root of this 2 × 2 matrix using standard methods
given by Levinger [50].

√
ρ̂1 =

√
K1ρ̂K

†
1 =

√
2√

1 + |b|2 +
√

3|b|

(
1
2 +

√
3|b|
4

ab̄
4

āb
4

|b|2
2 +

√
3|b|
4

)

Now that we have the square root of ρ̂1, we may compute p1CF (ρ̂1).

p1CF (ρ̂1) = p1 − tr

(√√
K1ρ̂K

†
1 δ̂

√
K1ρ̂K

†
1

)

= p1 −
2

1 + |b|2 +
√

3|b|
×
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tr


√√√√√√
 x

(
1
2 +

√
3|b|
4

)2
+ |b|2

16 y
ab̄
4

[
x
(

1
2 +

√
3|b|
4

)
+ y

(
|b|2
2 +

√
3|b|
4

)]
āb
4

[
x
(

1
2 +

√
3|b|
4

)
+ y

(
|b|2
2 +

√
3|b|
4

)]
y
(
|b|2
2 +

√
3|b|
4

)2
+ |b|2

16 x




This matrix may look confusing at first. However, when we apply the stan-
dard methods discussed previously, we may find the trace of this rather
straightforwardly. This result can be found below.

p1CF (ρ̂1) = p1 −
2

1 + |b|2 +
√

3|b|
×

√
2
√
xy
[(

1
2 +

√
3|b|
4

) (
|b|2
2 +

√
3|b|
4

)
− |b|

2

16

]
+ x

(
1
2 +

√
3|b|
4

)2
+ y

(
|b|2
2 +

√
3|b|
4

)2
+ |b|2

16

We shall now proceed to find p2CF (ρ̂2): Fortunately, this is a lot more trivial.

√
ρ̂2 =

√
K2ρ̂K

†
2 =

√√√√(0 c
0 0

)(1
2

1
4

1
4

1
2

)(
0 0
c̄ 0

)
=

( |c|√
2

0
0 0

)

From this, we can work out p2CF (ρ̂2) rather easily.

p2CF (ρ̂2) = p2 − tr

(√√
K2ρ̂K

†
2 δ̂

√
K2ρ̂K

†
2

)

= p2 − tr


√√√√( |c|√2

0
0 0

)(
x 0
0 y

)( |c|√
2

0
0 0

)
= p2 −

|c|√
2

√
x

It can be shown that CF (ρ̂), in our example, is given by the following equa-
tion. For the much needed sake of brevity, I have not included the calcula-
tions behind the result.

CF (ρ̂) = 1− 1
1+
√

3
2

√
2
√
xy
[(

1
2 +

√
3

4

) (
1
2 +

√
3

4

)
− 1

16

]
+ (x+ y)

(
1
2 +

√
3

4

)2
+ 1

16

In order to make this example easier to follow, I shall choose a maximally
distant incoherent state, as I compute the fidelity. That is, I shall choose
x = 0 and y = 1. This choice is still allowed by the definition of an incoherent
state in the set I. We shall also let |b|, one of the elements of K1, be very
small so that |b|2 ≈ 0. Thus, we may proceed with the following argument,
using our new conditions for x, y and |b|.

CF (ρ̂) = 1− 1

1 +
√

3
2

√√√√(1
2

+

√
3

4

)2

+
1
16

≈ 1− 0.517776

From our previous calculations, we may compute
∑
n pnCF (ρ̂n) for n ∈ [1, 2].

Simultaneously substituting in our restrictions on x, y and |b|, we achieve
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the following, simple result.∑
n

pnCF (ρ̂n) = p1CF (ρ̂1) + p2CF (ρ̂2)

= p1 + p2 = 1

Therefore, we can claim an important result (specific to this example, of
course!). ∑

n

pnCF (ρ̂n) = 1 > 1− 0.517776 ≈ CF (ρ̂)

This tells us all we need to know: The fidelity of coherence is non-decreasing
under an example of subselective measurements. Hence, (C2b) is not sat-
isfied, in general, for the distance measure induced by the Fidelity. This is
an original proof: Another (much more concise) argument that uses Bloch
representation of quantum states was laid out by Shao et. al. [51]. We may
interpret this argument to say that the fidelity of quantum coherence is not
a suitable coherence measure.

After seeing two functionals that failed to be coherence measures, it would
be timely to discuss a very promising potential measure of coherence.

4.5. Distance Traversed by the Dephasing Map. In this discussion,
we shall refer back to Definition 2.4 for the definition of the dephasing map.
We can construct a potential coherence measure using this map.

Definition 4.8. Given a quantum state ρ̂, the Dephasing Distance of
Coherence is defined as:

CΦ(ρ̂) =
1
2

tr (|ρ̂− Φ(ρ̂)|)

where Φ(ρ̂), the dephasing map, is given by Φ(ρ̂) =
∑
n |n〉〈n|ρ̂|n〉〈n|

The intuition behind this functional lies in the fact that Φ(ρ̂) maps ρ̂ to its
closest incoherent form. This can be seen by considering the Hilbert-Schmidt
norm [52] of ρ̂− Φ(ρ̂). Then, we can show that this distance is minimised.

The Hilbert-Schmidt norm of a matrix A can be written in terms of its sin-
gular values, {sn}: ‖A‖HS = (

∑
n1 s

2
n(A))

1
2 . The singular values of A can be

calculated by square rooting the eigenvalues of the self-adjoint non-negative
operator A†A. In order to see that this is minimised, we shall examine the
square of the Hilbert-Schmidt distance between ρ̂ and Φ(ρ̂). We first use the
fact that the square can be expanded.

‖ρ̂− Φ(ρ̂)‖2HS = ‖ρ̂‖2HS − 2 ‖ρ̂ · Φ(ρ̂)‖HS + ‖Φ(ρ̂)‖2HS

 ‖ρ̂‖2HS − 2 ‖Φ(ρ̂)‖HS · ‖ρ̂‖HS + ‖Φ(ρ̂)‖2HS

We achieve a lower bound from the fact that the Hilbert-Schmidt norm
is submultiplicative [53]. That means that ‖ρ̂ · Φ(ρ̂)‖HS ¬ ‖Φ(ρ̂)‖HS · ‖ρ̂‖HS.
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Hence, in order to show that the Hilbert-Schmidt norm is minimised we must
prove that the inequality is saturated: ‖ρ̂ · Φ(ρ̂)‖HS = ‖Φ(ρ̂)‖HS · ‖ρ̂‖HS.

‖Φ(ρ̂)‖HS · ‖ρ̂‖HS =

∑
i1

s2
i (ρ̂)

 1
2

×

∑
j1

∑
n

|n〉〈n|s2
j (ρ̂)|n〉〈n|

 1
2

=

∑
i1

s2
i (ρ̂)

 1
2

×

∑
j1

s2
j (ρ̂)

 1
2

=

∑
i1

s2
i (ρ̂)

∑
j1

s2
j (ρ̂)

 1
2

‖Φ(ρ̂) · ρ̂‖HS =

∑
i1

s2
i (ρ̂)

∑
j1

∑
n

|n〉〈n|s2
j (ρ̂)|n〉〈n|

 1
2

=

∑
i1

s2
i (ρ̂)

∑
j1

s2
j (ρ̂)

 1
2

Hence, ‖ρ̂ · Φ(ρ̂)‖HS = ‖Φ(ρ̂)‖HS · ‖ρ̂‖HS as the dephasing map leaves the
singular values of ρ̂ invariant. Thus, we can say that the dephasing map
minimises the Hilbert-Schmidt distance. Therefore, the distance measure
we constructed could potentially be a good coherence measure, as it mea-
sures from the closest incoherent state, Φ(ρ̂), to ρ̂.

We may now investigate (C1)-(C3) for this potential measure. They follow
in a similar vein to the l1 norm of coherence.

(C1): Let δ̂ ∈ I, then δ̂ is a density matrix, whose off-diagonal elements are
all zero. We use the fact that the dephasing map leaves a diagonal
matrix invariant. Thus, we achieve the following result.

CΦ(δ̂) =
1
2

tr
(
|δ̂ − Φ(δ̂)|

)
=

1
2

tr
(
|δ̂ − δ̂|

)
= 0

We can now turn to (C3) for this functional. It is fairly easy to see that (C3)
is satisfied from the fact that the trace norm is convex.

(C3): By the definition of CΦ(ρ̂) and the usual set-up for the proof of (C3),
we see that the following argument holds.

CΦ(
∑
n

pnρ̂n) =
1
2

tr

(
|
∑
n

pnρ̂n − Φ(
∑
n

pnρ̂n)|
)

[Φ(ρ̂) is linear ⇒] =
1
2

tr

(
|
∑
n

pnρ̂n −
∑
n

pnΦ(ρ̂n)|
)

=
1
2

tr

(
|
∑
n

pn (ρ̂n − Φ(ρ̂n)) |
)

[tr (| · |) is convex ⇒] ¬ 1
2

∑
n

pntr (| (ρ̂n − Φ(ρ̂n)) |)

=
∑
n

pnCΦ(ρ̂n)

Therefore, CΦ(ρ̂) is non-increasing under mixing of states. In other
words, CΦ(ρ̂) is convex.
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We shall now examine the sub-properties of (C2b) as before. If the func-
tional satisfies (F2)-(F5), then it satisfies (C2b) by the argument mentioned
in the discussion of relative entropy.

(F2): This is fairly starightforward to prove. By the argument given by
Watrous [46], we can proceed in the following way.

CΦ(Uρ̂U †) =
1
2

tr
(
|Uρ̂U † − Φ(Uρ̂U †)|

)

=
1
2

tr
(
|Uρ̂U † − UΦ(ρ̂)U †|

)

=
1
2

tr
(
|U(ρ̂− Φ(ρ̂))U †|

)

=
1
2

tr
(√

(U(ρ̂− Φ(ρ̂))U †)† (U(ρ̂− Φ(ρ̂))U †)
)

=
1
2

tr
(√

U(ρ̂− Φ(ρ̂))†(ρ̂− Φ(ρ̂))U †
)

=
1
2

tr
(
|U †(ρ̂− Φ(ρ̂))|

)

=
1
2

tr
(√

(U †(ρ̂− Φ(ρ̂)))† (U †(ρ̂− Φ(ρ̂)))
)

=
1
2

tr
(√

(ρ̂− Φ(ρ̂))†UU †(ρ̂− Φ(ρ̂))
)

=
1
2

tr
(√

(ρ̂− Φ(ρ̂))†(ρ̂− Φ(ρ̂))
)

=
1
2

tr (|ρ̂− Φ(ρ̂)|) = CΦ(ρ̂)

Therefore, CΦ(ρ̂) is invariant under a unitary transformation, de-
scribed by a unitary matrix U and its inverse U †.

(F3): Consider a Hilbert Space H = H1 ⊗ H2. Let ρ̂1 = trH2 ρ̂. Then, we
may compute CΦ(ρ̂1).

CΦ(ρ̂1) =
1
2

tr (|ρ̂1 − Φ(ρ̂1)|) =
1
2

tr (|trH2 ρ̂− Φ(trH2 ρ̂)|)

As ρ̂ is defined over H = H1 ⊗H2, we can suggest that ρ̂  ρ̂1.This
is because either all of the information encoded in ρ̂ belongs to ρ̂1
or the information is shared between ρ̂1 and ρ̂2. Therefore, by the
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subadditivity property, we have that

CΦ(ρ̂1) =
1
2

tr (|ρ̂1 − Φ(ρ̂1)|) ¬ 1
2

tr (|ρ̂− Φ(ρ̂)|) = CΦ(ρ̂)

Hence, the dephasing distance of coherence decreases under partial
tracing.

(F4): This property involves another straightforward proof. We may write
our functional in terms of a distance measure: D(ρ̂||Φ(ρ̂)). We actu-
ally achieve a strict equality for this property.

∑
i

piD

(
ρ̂i
pi

∣∣∣∣∣∣∣∣Φ(ρ̂i)
pi

)
=
∑
i

pitr
(∣∣∣∣ ρ̂ipi − Φ(ρ̂i)

pi

∣∣∣∣)

=
∑
i

tr
(∣∣∣∣ρ̂i − Φ(ρ̂i)

∣∣∣∣)
=
∑
i

D(ρ̂i||Φ(ρ̂i))

(F5a): In order to prove this property, we have to first write our functional
in a different way. It can be shown that C(Φ(ρ̂)) can be written
as the supremum of a function over all positive quantum operators
bounded above by the identity operator. That is:

CΦ(ρ̂) = sup
E: 0¬E¬1

[tr(ρ̂− Φ(ρ̂))E]

We can then proceed in the following way:

CΦ(
∑
i

Pi ρ̂ Pi) = sup
E: 0¬E¬1

[
tr

(∑
i

Pi ρ̂ Pi − Φ(
∑
i

Pi ρ̂ Pi)

)
E

]

= sup
E: 0¬E¬1

[
tr

(∑
i

(Pi ρ̂ Pi − Pi Φ(ρ̂) Pi)

)
E

]

=
∑
i

sup
E: 0¬E¬1

[tr ((Pi ρ̂ Pi − Pi Φ(ρ̂) Pi))E]

=
∑
i

CΦ(Pi ρ̂ Pi)

Due to the linearity and additivity of the trace [54], we may take
the summation sign outside of the trace function. This can be seen
in the third equality of the proof.
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(F5b): Recall that this property involves the rank-1 projector Pu, such that
Pu = |u〉〈u|. We progress by a simple calculation of CΦ(ρ̂⊗ Pu).

CΦ(ρ̂⊗ Pu) =
1
2

tr (|ρ̂⊗ Pu − Φ(ρ̂⊗ Pu)|)

=
1
2

tr (|ρ̂⊗ |u〉〈u| − Φ(ρ̂⊗ |u〉〈u|)|)

=
1
2

tr (|ρ̂⊗ |u〉〈u| − Φ(ρ̂⊗ |u〉〈u|)|)

=
1
2

tr (|ρ̂⊗ |u〉〈u| − Φ(ρ̂)⊗ |u〉〈u||)

=
1
2

tr (|[ρ̂− Φ(ρ̂)]⊗ |u〉〈u||)

=
1
2

tr (|ρ̂− Φ(ρ̂)|) · tr (||u〉〈u||)

[tr (||u〉〈u||) = 1]⇒ =
1
2

tr (|ρ̂− Φ(ρ̂)|) = CΦ(ρ̂)

Hence, the dephasing distance measure of coherence is indeed invari-
ant under a tensor product with a rank-1 projector.

This tells us that the (original) functional CΦ(ρ̂) is a coherence measure.
We can state that it is a good coherence measure from the fact that Φ(ρ̂)
maps to the closest incoherent state to ρ̂. It is also worth noting that the
dephasing map exists in infinite-dimensional Hilbert spaces. That is, we may
introduce Φ∞(ρ̂), defined to be the following operation.

Φ∞(ρ̂) =
∞∑
n=0

|n〉〈n|ρ̂|n〉〈n|

Hence, we can suggest that CΦ(ρ̂) can exist in infinite-dimensional systems.
We shall now discuss a potential coherence measure that definitely does not
hold in infinite-dimensional Hilbert Spaces.

4.6. Distance from the Maximally Coherent State. Nearly all coher-
ence measures to be found in the literature are distance measures that mea-
sure from an incoherent state to a coherent state. In order to alternatively
quantify the coherence of a given quantum state, we may be able to measure
its distance from a maximally coherent state, if indeed such a state exists.
In fact, we have a standard definition for the maximally coherent state in
d-dimensional Hilbert spaces [12]:

|ϕd〉 =
1√
d

d−1∑
n=0

|n〉
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This is defined to be the state in which any d-dimensional state can be
prepared, by the use of incoherent operations. It is obvious to see that this
state is not defined in infinite-dimensional systems. We may form a density
matrix of this state, by performing the outer product of |ϕd〉.

|ϕd〉〈ϕd| =
1
d

(
d−1∑
n=0

|n〉
)
·
(
d−1∑
m=0

〈m|
)

=
1
d


1 1 1 . . . 1
1 1 1 . . . 1
1 1 1 . . . 1
...

...
...

. . .
...

1 1 1 . . . 1


The distance measure (induced by the trace norm), involving this maxi-
mally coherent density matrix, may be a measure of coherence. We define it
concretely below.

Definition 4.9. Given a quantum state ρ̂, the Distance from Coherence
is defined in the subsequent way.

Cd(ρ̂) =
1
2

tr (|ρ̂− |ϕd〉〈ϕd||)

where |ϕd〉〈ϕd| is defined above.

As promising as this coherence measure looks, a simple example belies any
validity of Cd(ρ̂) being a coherence measure.

(C1): Let δ̂ = |1〉〈1| such that δ̂ ∈ I. Then we may compute Cd(δ̂) in the
following way.

Cd(δ̂) =
1
2

tr (||1〉〈1| − |ϕd〉〈ϕd||)

=
1
2

tr



∣∣∣∣∣∣∣∣∣∣∣∣


0 0 0 . . . 0
0 1 0 . . . 0
0 0 0 . . . 0
...

...
...

. . .
...

0 0 0 . . . 0

 − 1
d


1 1 1 . . . 1
1 1 1 . . . 1
1 1 1 . . . 1
...

...
...

. . .
...

1 1 1 . . . 1



∣∣∣∣∣∣∣∣∣∣∣∣



=
1
2

tr



∣∣∣∣∣∣∣∣∣∣∣∣
− 1

d


1 1 1 . . . 1
1 (1− d) 1 . . . 1
1 1 1 . . . 1
...

...
...

. . .
...

1 1 1 . . . 1



∣∣∣∣∣∣∣∣∣∣∣∣


This, of course, is not equal to zero because the trace of the resulting
matrix is non-zero. Therefore, Cd(δ̂) 6= 0 and we can state that this
functional violates (C1).
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In order to remedy this breach of (C1), I thought about a new functional,
C̃d(ρ̂):

C̃d(ρ̂) = 1 − Cd(ρ̂)

However, the example mentioned above violates this amendment also. It
could also be shown that C̃d(ρ̂) violates the convexity property that a coher-
ence measure must possess. It is also important to recall that the maximally
coherent state, |ϕd〉, is not defined in infinite-dimensional systems. Thus, any
functional involving such a state would not be a suitable coherence measure
in infinite-dimensional Hilbert spaces.

It is known that some coherence measures, that are well-defined in finite-
dimensions, become unstable when extended to infinite-dimensional systems.
Below, I will discuss the stability of two well-renowned, previously discussed,
coherence measures in infinite dimensions.

5. Measuring the Coherence of Canonical Coherent States

We must refer back to the canonical coherent states defined in the introduc-
tion of this paper. Roy Glauber discovered these states back in 1963 [9] and
in this section, we attempt to measure the coherence of these states. The fas-
cination behind this idea revolves around the fact that Glauber defined these
states as Coherent States. Now that the theory of quantum coherence has
vastly improved since the early 60’s, these states have since been renamed
as the canonical coherent states. The surrounding ambiguity of quantum
coherence begs the question: How coherent are the canonical coherent states
defined by Roy Glauber in 1963?

Recall from Properties 1.1 - 1.3, Glauber’s canonical coherent states are
defined in infinite-dimensional Hilbert spaces. Thus, we need a coherence
measure that is well-defined in infinite-dimensional Hilbert spaces. In this
section, we shall discuss a property that a coherence measure must satisfy
in order for this to be the case. But first, we must discuss some background
information, as we did for the finite-dimensional case, before we can begin
to discuss infinite-dimensional coherence measures.

5.1. Incoherent States and Operations in Infinite Dimensions. It is
important to extend the definitions given in this manuscript to the infinite-
dimensional Hilbert space spanned by the number basis. This is so we can
paint a full picture of the system, providing intuition for the extra property
that a coherence measure must satisfy in order to be defined in infinite
dimensions. We shall define incoherent states and incoherent operations in
infinite dimensions.

Definition 5.1. An ∞-dimensional incoherent state, δ̂ ∈ I, is defined
to be a diagonal density matrix with respect to a chosen basis. That is
to say, an incoherent state defined in the number basis is given by the
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following equation.

δ̂ =
∞∑
i=0

δi|i〉〈i|

The δi satisfy both 0 ¬ δi ¬ 1 and
∑∞
i=0 δi = 1.

As the number basis spans an infinite-dimensional Hilbert space, we can
merely extend our definition of finite-dimensional incoherent states. We shall
now give the definition for incoherent operations that allow for sub-selective
measurements, again, in terms of Kraus operators.

Definition 5.2. An infinite-dimensional incoherent measuring opera-
tion, Φ∞(ρ̂), is given by a set of Kraus operators, {Kn}0¬n¬∞, satisfying
both KnIK

†
n ⊂ I and

∑∞
n K†nKn = 1. Each Kraus operator, Kn, is of di-

mension dn×∞ for each n. Thus, we can say that an infinite-dimensional
incoherent measuring operation is given in the following form.

Φ∞(ρ̂) =
∞∑
n

Knρ̂K
†
n

This is the infinite-dimensional extension of the operations involved in the
(C2b) property. I stated these generalised definitions for the infinite-dimensional
case, so that it can be easily shown that the properties (C1)-(C3) hold for
coherence measures in infinite dimensions. As mentioned previously, there
is an extra property that coherence measures have to satisfy in order to be
defined in infinite dimensions. I shall tweak the definition of (C4) given by
Zhang et. al. [55].

(C4): Let C(ρ̂) be a coherence measure that satisfies the properties
(C1) - (C3) in finite dimensions. Then, we say that C(ρ̂) is de-
fined in infinite-dimensional systems if C(ρ̂) < ∞ for a fixed
average particle number, 〈n〉.

This condition may seem abstract if one is not familiar with mathematical
analysis. Put into words, we require that an infinite-dimensional coherence
measure does not diverge for a fixed particle number 〈n〉. Though we have
not discussed particle numbers in this manuscript, we can see that the av-
erage particle number of a system described by the canonical coherent state
can be written in familiar terms.

We may calculate the average number of particles residing in a system de-
scribed by the canonical coherent state using the number operator N̂ = â†â.
Recall that the expectation value of an operator X̂ in a pure quantum state
|ϕ〉 is given by:

〈X̂〉ϕ = 〈ϕ|X̂|ϕ〉
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Knowing that the canonical coherent state is an eigenstate of the annihila-
tion operator, we may compute 〈n〉α as the expectation value of the number
operator [56]. That is:

〈n〉α = 〈N̂〉α = 〈α|N̂ |α〉 = 〈α|â†â|α〉 = |â|α〉|2 = ||α|eiθ|2

∴ 〈n〉α = |α|2

It is interesting to note that the average number of particles residing in a
system described by a canonical coherent state is related to the amplitude,
|α|, of the system. Thinking about Schrödinger’s wave mechanics, this cor-
relation could be due to constructive interference of the individual waves
describing each particle. The more particles that reside in a particularly co-
herent system, the greater the chance of constructive interference occurring
between each particle. Thus, an increase in amplitude of the entire system
occurs as a result. It would be interesting to see an investigation done into
the effects of constructive interference of a coherent system: A possible path-
way of discussion, perhaps.

The above argument suggests that we can investigate (C4), for a canonically
coherent system, by first fixing |α|2 and then testing whether a coherence
measure converges. This line of reasoning can be made clearer by an example.

5.2. The Relative Entropy of the Canonical Coherent State. The
relative entropy is a coherence measure that seems to work in infinite di-
mensions. We may write the relative entropy in terms of probability distri-
butions. Known as the Shannon entropy [57], for a set of probability distri-
butions {Qi}, it can be defined in the following way:

CRel Ent.(ρ̂) = −
∑
i

Qi · log (Qi)

It turns out that there is a simple way of calculating the probability dis-
tribution of detecting n particles residing in a canonically coherent system.
The calculation is as follows.

The canonical coherent state can be given by |α〉 = e−
|α|2

2
∑∞
n=0

αn√
n!
|n〉.

Therefore, we can use this to compute the probability distribution [58],
QCS(n) = | 〈n|α〉 |2.

〈n|α〉 = 〈n| · e−
|α|2

2

∞∑
m=0

αm√
m!
|m〉 = e−

|α|2
2

∞∑
m=0

αm√
m!
〈n|m〉

= e−
|α|2

2
αn√
n!

since 〈n|m〉 = 1⇔ m = n

⇒ | 〈n|α〉 |2 = e−|α|
2 α2n

n!
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Remember that we defined the average number of particles in the canonically
coherent system, 〈n〉α, to be 〈n〉α = |α|2. Thus,

QCS(n) = | 〈n|α〉 |2 = e−〈n〉
〈n〉n

n!
This is, in fact, a Poisson distribution, showing the probability of a given
number of particles being detected in a fixed time frame, independently
of the last observation. We may use this distribution in the definition of
CRel Ent.(ρ̂) proposed above.

CRel Ent.(ρ̂) = −
∞∑
n=0

QCS(n) · log (QCS(n))

= −
∞∑
n=0

e−〈n〉
〈n〉n

n!
· log

(
e−〈n〉

〈n〉n

n!

)

= e−〈n〉
∞∑
n=0

〈n〉n

n!
· log

(
n!

〈n〉n e−〈n〉

)

= e−〈n〉
∞∑
n=0

〈n〉n

n!
· [log (n)− n log (〈n〉) + 〈n〉 log (e)]

= e−〈n〉
∞∑
n=0

〈n〉n

n!
· [log (n) + 〈n〉 log (e)]−

∞∑
m=0

〈n〉m

m!
m log (〈n〉)

= e−〈n〉
∞∑
n=0

〈n〉n

n!
· [log (n) + 〈n〉 log (e)]−

∞∑
m=0

〈n〉m−1

(m− 1)!
〈n〉
m
m log (〈n〉)

After relabelling the indices of the last summation and simplifying its sum-
mand, we get the following result.

CRel Ent.(|α〉) = e−〈n〉
∞∑
n=0

〈n〉n

n!
· log (n) + 〈n〉 log (e)− 〈n〉 log (〈n〉)

= e−〈n〉
∞∑
n=0

〈n〉n

n!
· log (n)− 〈n〉 log

(〈n〉
e

)
By the property of (C4), we wish for this series to converge for fixed 〈n〉.
We can observe convergence via the ratio test.

Theorem 5.3. Let
∑∞
n=1 an be a series. We say that this series converges

absolutely if and only if the following inequality is true.

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ < 1

This is known as the ratio test.

We may use Theorem 5.3 to test whether CRel Ent.(|α〉) converges. In order to
prepare the series for the ratio test, we may write each term in the summand
as an = e−〈n〉 〈n〉

n

n! log (n). As 〈n〉 is fixed, we may call it x in the following
argument, so as to avoid confusion. We start by calculating the input of
Theorem 5.3.
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∣∣∣∣an+1

an

∣∣∣∣ =

∣∣∣∣∣∣
e−x x

(n+1)

(n+1)! log((n+ 1)!)

e−x x
n

n! log(n!)

∣∣∣∣∣∣ =

∣∣∣∣∣x(n+1)n! log((n+ 1)!)
xn(n+ 1)! log(n!)

∣∣∣∣∣
=
∣∣∣∣x · n! log((n+ 1)n!)
n!(n+ 1) log(n!)

∣∣∣∣ =
∣∣∣∣x log((n+ 1)n!)

(n+ 1) log(n!)

∣∣∣∣
=
∣∣∣∣x log(n+ 1) + x log(n!)

(n+ 1) log(n!)

∣∣∣∣ =
∣∣∣∣ x log(n+ 1)
(n+ 1) log(n!)

+
x

(n+ 1)

∣∣∣∣
We can then apply the limit to this input. One can see what happens as n
gets large.

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

∣∣∣∣ x log(n+ 1)
(n+ 1) log(n!)

+
x

(n+ 1)

∣∣∣∣ = 0

because (n+ 1) log(n!) >> log(n+ 1) as n→∞

Therefore, the series converges absolutely with an infinite radius of conver-
gence. Thus, the relative entropy is suitable for measuring the coherence of
canonical coherent states residing in any infinite-dimensional system. I used
Mathematica to plot the coherence as measured by relative entropy against
the average number of particles residing in the system.

Figure 1. The coherence of the canonically coherent sys-
tem, retaining a various number of particles.
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From Figure 1, we see that the coherence tends to a finite value as 〈n〉 → ∞.
We can extrapolate the data collected and find an approximate value for the
limit.

lim
〈n〉→∞

CRel Ent.(|α〉) ≈ 2.7 nats

Though it may seem rather abritrary, this is an answer to the main ques-
tion posed by this manuscript. The coherence of relative entropy is given
in nats: the natural unit of information [59]. Interesting future work could
include calculating the maximum value that could be attained by the rela-
tive entropy. This would provide a reference point so that we can compare
this approximation to both the minimum and maximum value that rela-
tive entropy could achieve. We do know, however, that the minimum value
that relative entropy reaches is zero. Hence, at the very least, we can say
that the canonical coherent state is far from incoherent as the number of
particles residing in the system gets very large. It is important to note the
point at which 〈n〉 = 0: The zero particle system is perfectly incoherent.
This can be explained mathematically: The vacuum state |0〉 describes the
system that has no particles residing in it also the density matrix for this
system, |0〉〈0|, is diagonal and is therefore representing an incoherent system.

In order to conclude this investigation into the relative entropy, we shall
discuss the preliminary work I carried out before researching this line of
thought. I used the relative entropy to measure the coherence of the two-
dimensional canonical coherent state.

By the interesting work of Miranowicz et. al. [60], a numerical method was
shown to reduce the canonical coherent state into finite-dimensional states.
The two-dimensional canonical coherent state, whose coherence of which we
shall measure, is given below.

|α〉(1) = cos |α||0〉+ eiφ0 sin |α||1〉

In the definition given by Miranowicz et. al., a fixed phase φ0 and a fluc-
tuating amplitude |α| are considered. We wish to plot the coherence as the
amplitude varies. In order to do this, we must rewrite the coherence mea-
sure. The relative entropy may be calculated in terms of, {λi}, the set of
eigenvalues of the input state.

CRel Ent.(ρ̂) = −
∑
i

λi · log
(

1
λi

)

We can see that the eigenvalues of |α〉(1) are easy to find once we apply the
outer product using its Hermitian conjugate:
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|α〉〈α|(1,1) = (cos |α|)2|0〉〈0|+ eiφ0 cos |α| sin |α||1〉〈0|

+ e−iφ0 cos |α| sin |α||0〉〈1|+ (sin |α|)2|1〉〈1|

_=

(
(cos |α|)2 eiφ0 cos |α| sin |α|

e−iφ0 cos |α| sin |α| (sin |α|)2

)
It is clear to see that the eigenvalues of this matrix are dependent on the
amplitude of the system. Finding the eigenvalues of the matrix, I then sub-
stituted them into our new definition for the relative entropy and used Math-
ematica to plot the results. Figure 2, in which the amplitude of the system
is denoted by |α|, can be seen below.

Figure 2. The coherence of the canonically coherent two-
dimensional system for varying values of amplitude, |α|.

As a result of the eigenvalues being dependent on |α|, it appears that the
coherence is dependent on the amplitude of the system too. We see the same
zero coherence phenomenon for the point of zero amplitude. Referring back
to the definition of |α〉(1), we see that the state with zero amplitude is in-
deed the vacuum state, |0〉. One obvious conclusion we can draw is that the
vacuum state is incoherent in the number basis. The periodicity of the co-
herence with respect to the amplitude is yet to be explained, however. This
may be due to the loss of information we incur as a result of reducing the
canonical coherent state to two dimensions.

We shall now discuss a coherence measure that fails upon application to an
infinite-dimensional system. That is, it fails (C4).
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5.3. The l1 Norm of the Canonical Coherent State. Recall from Def-
inition 4.5, we defined the l1 norm of coherence as the sum of all the off-
diagonal elements. In order to see how this applies to the canonical coherent
state, we must construct the canonically coherent density matrix, |α〉〈α|. We
shall use the same outer product method that has been displayed throughout
this section.

|α〉〈α| = e−|α|
2

[ ∞∑
n=0

αn√
n!
|n〉
] ∞∑

j=0

(ᾱ)j√
j!
〈j|



_= e−|α|
2



1 ᾱ ᾱ2
√

2
. . . ᾱn√

n!
. . .

α |α|2 . . . . . . αᾱn√
n!
. . .

α2
√

2

... |α|4
2 . . . α2ᾱn√

2
√
n!
. . .

...
...

...
. . .

...
αn√
n!

ᾱαn√
n!

ᾱ2αn√
2
√
n!

. . . αnᾱn

n! . . .
...

...
...

...


Recall, the property (C4) requests that we fix 〈n〉α = |α|2. From this, we
can see rather straightforwardly that adding all of the (strictly positive)
elements of an infinite-dimensional square matrix will not converge and in
fact diverge to infinity. That is to say, we require the following double series
to converge.

Cl1(|α〉〈α|) = e−〈n〉
∞∑
n6=j

∣∣∣∣∣ αn√n!
· (ᾱ)j√

j!

∣∣∣∣∣
We can prove this much more robustly using the theory of partial sums. The
following theorem, from the work of Habil [61], helps us to understand this
divergence idea for double series more clearly.

Theorem 5.4. A double series of non-negative terms
∑∞
n,j=0 z(n, j)

converges if and only if the set of partial sums {s(n, j) : n, j ∈ N} is
bounded.

We can prove non-convergence of a double series by showing that the set of
partial sums is unbounded. We can proceed by proof of contradiction.

We may assume that there exists a supremum, A ∈ R, such that the set of
partial sums of the series we wish to investigate, S, is bounded. That is,

S =

e−〈n〉
n∑
a=1

j∑
b=1

αa√
a!
· (ᾱ)b√

b!
· (1− δa,b) : n, j ∈ N

 ¬ A
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Consider the case where n = 2 and j = 2. We can calculate the explicit
equation for the partial sum, S2,2, bounded by the supremum A.

S2,2 = e−〈n〉
2∑

a=1

2∑
b=1

αa√
a!
· (ᾱ)b√

b!
· (1− δa,b)

= e−〈n〉
(
α+ ᾱ+

α2
√

2
+
ᾱ2
√

2
+
〈n〉α√

2
+
〈n〉 ᾱ√

2

)
¬ A

Here, we have used the equation |α|2 = α · ᾱ = 〈n〉. If we consider the case
where n = 3 and j = 3, we achieve the following expression for S3,3, noting
that A is no longer the supremum of the set.

S3,3 = e−〈n〉
3∑

a=1

3∑
b=1

αa√
a!
· (ᾱ)b√

b!
· (1− δa,b)

= e−〈n〉
(
α+ ᾱ+

α2
√

2
+
ᾱ2
√

2
+
〈n〉α√

2
+
〈n〉 ᾱ√

2

+
α3
√

6
+
α3ᾱ√

6
+
ᾱ2α3
√

6
+
α2ᾱ3
√

6
+
αᾱ3
√

6
+
ᾱ3
√

6

)

= A+ e−〈n〉
(
α3
√

6
+
α3ᾱ√

6
+
ᾱ2α3
√

6
+
α2ᾱ3
√

6
+
αᾱ3
√

6
+
ᾱ3
√

6

)

 A

This tells us that, if we are given n, j ∈ N, we may always find n + 1, j +
1 ∈ N such that s(n + 1, j + 1) > s(n, j). Thus, there is no supremum for
the set of partial sums, {s(n, j) : n, j ∈ N}, of our double series. Hence, the
double series we are investigating is non-convergent and therefore Cl1(|α〉〈α|)
violates (C4). We can now state that the l1 norm of coherence would not be
a suitable measure over the canonically coherent system.

6. Conclusion

In this manuscript, we defined incoherent states and incoherent operations
that are engineered in the number basis. We have stated and explained the
four tenets that functionals must satisfy in order to be called coherence mea-
sures in finite-dimensional systems. Using these, we proved these tenets for
two widely-renowned coherence measures and three promising candidates.

The relative entropy and l1 norm of coherence are widely known and proven
coherence measures. In this paper, we provided an original proof that ratifies
the claim that the l1 norm of coherence is indeed a coherence measure. The
proof clearly takes advantage of the well-documented relationship between
coherence and entanglement measures, of which we have not explicitly dis-
cussed here. This may be a possible avenue of investigation.
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Unfortunately, the very promising coherence measure induced by fidelity did
not satisfy (C2b). I gave an example of a quantum state, and a set of Kraus
operators, for which the fidelity of quantum coherence increased on average
under sub-selective measurements of the quantum state. Thus, this paper
provided an original testimony for the case against the fidelity of coherence
being a coherence measure.

The three original candidates I proposed in this paper provided insight on
how to approach the construction of coherence measures. The first distance
measure I constructed utilised the dephasing map. Knowing that the de-
phasing map diagonalises any density matrix, I postulated that the distance
from the original state to its diagonalised form would provide a measure of
coherence. Indeed, we saw that this original measure satisfied the four tenets
stated in this paper.

Another original distance measure we discussed involved the commutator,
defined as C[·,·](ρ̂) =

∥∥∥[ρ̂, N̂ ]
∥∥∥

1
. The intuition behind this functional was to

treat the absolute value of the commutator as a measure of distance. The
resulting value would tell us how close a state ρ̂ would be to the diagonal
matrix N̂ . An in-depth look into the (C2b) property soon belied any validity
C[·,·](ρ̂) had of being a coherence measure. It was difficult to show that it
decreased under a partial trace operation due to complicated Lie algebras
at play.

The third candidate we proposed involved the maximally coherent state.
Having been understood for years, the maximally coherent state is said to
be the state that can be prepared into any d-dimensional state with the use
of incoherent operations. By computing the trace distance between the max-
imally coherent state and an input state ρ̂, we attempted to find a different
form of measure. Instead, this possible measure would quantify how distant
the input state would be from the maximally coherent state. A straightfor-
ward example debased the claim that Cd(ρ̂) could be a coherence measure.
It is also important to note that this measure would not be valid in infinite
dimensions due to the fact that the maximally coherent state is not defined
in infinite dimensions.

For the stated functionals that deserve the right to be called coherence
measures, we stated an extra property that they needed to satisfy in order
to function as coherence measures in infinite-dimensional systems. We saw
that relative entropy satisfied this new property, allowing us to measure the
coherence of the canonical coherent state. I stated that the l1 norm of coher-
ence fails upon application to an infinite-dimensional system, proving that
the functional is unstable for a fixed average particle number. Though we
have seen an original approach in this paper, the claim that the l1 norm
of coherence fails in an infinite-dimensional setting is nothing new. I imple-
mented this to build upon the already insurmountable case for how difficult
it is to construct coherence measures. To have only the relative entropy of
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coherence, out of the five potential coherence measures proposed in this pa-
per, to be valid in infinite dimensions is nothing short of astounding in my
estimation.

Throughout this manuscript, I have clearly considered other avenues of in-
vestigation, particularly when constructing coherence measures and the tools
required to do so. I hope that this plants the seed for yet more coherence
measures to come to fruition.
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